Eintrittswahrscheinlichkeit
Eintrittswahrscheinlichkeit
Die Eintrittswahrscheinlichkeit ist eine quantitative oder qualitative Angabe über die Wahrscheinlichkeit, mit der ein Risikoereignis innerhalb eines bestimmten Zeitraums eintritt.
Zur vollständigen Angabe eines ↑ Risikos gehören seine Auswirkung und seine Eintrittswahrscheinlichkeit. Diese beiden Größen werden im Rahmen der Risikoanalyse ermittelt und dienen als Kriterien für die Steuerung des Risikos, z.B. um eine ↑ Risikomatrix darzustellen.
Die Bestimmung der Eintrittswahrscheinlichkeit eines Risikoereignisses ist i.A. nicht exakt möglich. Deshalb werden oft qualitative Skalen für seine Beschreibung verwendet, z.B. die drei Stufen "niedrig", "mittel" und "hoch". Allerdings sind qualitative Skalen nicht geeignet, um Risikoprioritätszahlen zu berechnen, wie z.B. das Produkt aus Eintrittswahrscheinlichkeit und der monetär bewerteten Schadenshöhe. Um Berechnungen mit der geschätzten Eintrittswahrscheinlichkeit durchzuführen sind quantitative Skalen mit definierten Stufen üblich, wie z.B. eine neunstufige Skala in 10%-Schritten (10% bis 90%). Wenn ein zukünftiges Ereignis mit einer Eintrittswahrscheinlichkeit von 100% zu bewerten ist, stellt es kein Risiko mehr dar, sondern ein sicheres Ereignis und damit eine zu beachtende Rahmenbedingung.
Die Angabe der Eintrittswahrscheinlichkeit ist nur sinnvoll mit der Angabe eines Zeitraumes, für den diese Wahrscheinlichkeit gilt, da über einen unbegrenzten Zeitraum auch Ereignisse mit einer sehr geringen Wahrscheinlichkeitsdichte mit Sicherheit eintreten werden. Mathematisch korrekt wäre die Angabe der zeitabhängigen Wahrscheinlichkeitsdichtefunktion, da diese z.B. berücksichtigt, dass ein Risikoereignis in bestimmten Zeiten öfter eintritt als an anderen. So ist z.B. die Wahrscheinlichkeit, dass Frost Bauarbeiten verhindert, im Januar deutlich höher als im März.
Eintrittswahrscheinlichkeit bei PRINCE2
PRINCE2® definiert "Eintrittswahrscheinlichkeit" als "the evaluated likelihood of a particular threat or opportunity actually happening, including a consideration of the frequency with which this may arise." Diese Definition erweitert die Betrachtung der Eintrittswahrscheinlichkeit von Ereignissen auch auf Chancen. Weiterhin betrachtet PRINCE2 die sogenannte Eintrittsnähe, d.h. den nächstmöglichen Zeitpunkt, zu dem das Risikoereignis eintreten kann. Die zusätzlichen Angaben von Eintrittshäufigkeit Eintrittsnähe stellen eine allgemeinverständliche, indirekte Angabe der Wahrscheinlichkeitsdichtefunktion dar.
Eintrittswahrscheinlichkeit im PM3
Rohrschneider und Spang weisen indirekt auf die mögliche Abhängigkeit von Risikoereignissen hin, d.h. dass die Eintrittswahrscheinlichkeiten verschiedener Risikoereignisse unter Umständen voneinander abhängig sein können (Rohrschneider und Spang: Risiken und Chancen, in: Gessler (Hrsg.): Kompetenzbasiertes Projektmanagement (PM3), Nürnberg 2009). So kann der Eintritt eines Risikoereignisses ein anderes wahrscheinlicher machen oder umgekehrt es auch verhindern.
Eintrittswahrscheinlichkeit im PMBOK Guide
Der PMBOK® Guide spricht von "risk probability", bzw. "Risikowahrscheinlichkeit". Dabei unterscheidet er explizit zwischen qualitativer und quantitativer Risikoanalyse. Bei der qualitativen Risikoanalyse werden für die identifizierten Risiken durchaus quantitative Schätzungen für die Risikowahrscheinlichkeit erstellt, allerdings dienen diese in erster Linie zur Bewertung des Risikos. Bei der quantitativen Risikoanalyse werden nur die zuvor hoch priorisierten Risiken weiter analysiert. Dabei werden die Auswirkungen dieser Risiken auf die Erfolgswahrscheinlichkeit des Projekts analysiert, z.B. wie hoch die Wahrscheinlichkeit ist, dass das Projekt termintreu abgeschlossen werden kann. Explizit benennt der PMBOK® Guide hierbei die Wahrscheinlichkeitsdichtefunktionen als Werkzeug, um Simulationen für die Erfolgsaussichten des Projekts durchzuführen.
Erläuterungen und Kommentar
Die Angabe einer Eintrittswahrscheinlichkeit für viele Projektrisiken ist aus statistischer Sicht nicht möglich, da Wahrscheinlichkeiten nur bei hinreichend vielen Fallzahlen definiert werden können. So kann z.B. ein sinnvoller Erwartungswert angegeben werden für die Chance, im Lotto zu gewinnen oder für die Gefahr, bei der nächsten Autofahrt eine Reifenpanne zu haben. Für das Projektrisiko, dass sich der gewählte Lösungsansatz als technisch nicht praktikabel erweist, kann lediglich ein subjektiv geschätzter Erwartungswert der beteiligten Personen erhoben werden.
Für Risikoereignisse, die nicht durch das Projekt selbst bedingt sind, sondern durch nur statistisch beschreibbare, äußere Rahmenbedingungen wie z.B. das Wetter oder krankheitsbedingte Personalausfälle, können zwar statistisch sinnvolle Eintrittswahrscheinlichkeiten ermittelt werden, allerdings bleibt dabei immer noch zu berücksichtigen, dass es sich bei einem Projekt nur um ein einzelnes Ereignis handelt. Während bei einer Serienproduktion u.U. eine Ausfallquote von 20% akzeptabel ist, da genügend fehlerfreie Produkte erstellt werden, kann ein Projekt mit einer Erfolgschance von 50% nicht einfach dreimal durchgeführt werden, um seine Erfolgschance auf über 80% zu erhöhen.
Ein realistisches Risikomanagement für ein konkretes Projekt muss also stets den Fall berücksichtigen, dass ein identifiziertes Risiko tatsächlich eintritt, selbst wenn es nur eine geringe Eintrittswahrscheinlichkeit hat.